Estimation of the Particle Size Distribution of a Latex using a General Regression Neural Network
نویسندگان
چکیده
Abstract This paper presents a neural-based model for estimating the particle size distribution (PSD) of a polymer latex, which is an important physical characteristic that determines some end-use properties of the material (e.g., when it is used as an adhesive, a coating, or an ink). The PSD of a dilute latex is estimated from combined DLS (dynamic light scattering) and ELS (elastic light scattering) measurements, taken at several angles. To this effect, a neural network approach is used as a tool for solving the involved inverse problem. The method utilizes a general regression neural network (GRNN), which is able to estimate the PSD on the basis of both the average intensity of the scattered light in the ELS experiments, and the average diameters calculated from the DLS measurements. The GRNN was trained with a large set of measurements simulated from typical asymmetric PSDs, represented by unimodal normal-logarithmic distributions of variable geometric mean diameters and variances. The proposed approach was successfully evaluated on the basis of both simulated and experimental examples.
منابع مشابه
Use of artificial neural networks to estimate installation damage of nonwoven geotextiles
This paper presents a feed forward back-propagation neural network model to predict the retained tensile strength and design chart in order to estimation of the strength reduction factors of nonwoven geotextiles due to installation process. A database of 34 full-scale field tests were utilized to train, validate and test the developed neural network and regression model. The results show that t...
متن کاملModeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)
Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملEstimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?
Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...
متن کاملUsing neural network to estimate weibull parameters
As is well known, estimating parameters of the tree-parameter weibull distribution is a complicated task and sometimes contentious area with several methods vying for recognition. Weibull distribution involves in reliability studies frequently and has many applications in engineering. However estimating the parameters of Weibull distribution is crucial in classical ways. This distribution has t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008